Did Anybody Even Think To Check Surrounding Biology?
In the 1970s, the US Department of Commerce,Department of Defense, and the Transportation Department found the need to replace the existing national radar network, consisting of non-Doppler WSR-74 and WSR-57 radars developed in 1974 and 1957, respectively, to better serve their operational needs. The Joint Doppler Operational Project (JDOP) was formed in 1976 at the National Severe Storms Laboratory to study the usefulness of using Doppler radar to identify severe and tornadic thunderstorms. Tests over the next three years, conducted by the National Weather Service and the US Air Force Weather Service, found that Doppler radar provided much improved early detection of severe thunderstorms. A working group that included the JDOP published a paper providing the concepts for the development and operation of a national weather radar network. In 1979, the NEXRAD JSOP was formed to move forward with the development and deployment of the proposed NEXRAD radar network. The JSOP group needed to select a contractor to develop and produce the radars that would be used for the national network. Radar systems developed by Raytheon and Unisys were tested during the 1980s. Unisys was selected as the contractor, and was awarded a full-scale production contract in January 1990.[1]
Installation of a prototype was completed in the Fall of 1990 in Norman, Oklahoma. The first installation of a WSR-88D for operational use in everyday forecasts was in Sterling, Virginia on June 12, 1992. The last system of this installation campaign was installed in North Webster, Indiana on August 30, 1997. In 2011 a single new radar was added at Langley Hill, WA to better cover the Pacific coast in that area. The site locations were strategically chosen to provide the most overlapping coverage between radars in case one failed during a severe weather event. Where possible, they were co-located with NWS Weather Forecast Offices to permit quicker access to maintenance technicians.[2]
The NEXRAD radars incorporated a number of improvements over the radar systems previously in use. The new system provided Doppler velocity, improving tornado prediction ability. It provided improved resolution and sensitivity, allowing operators to see features such as cold fronts, thunderstorm gust fronts, and mesoscale features of thunderstorms that had never been visible on radar. The NEXRAD radars also provided volumetric scans of the atmosphere allowing operators to interrogate the vertical structure of storms and provide detailed wind profiles above the radar site. The radars also had a much increased range allowing detection of weather features at much greater distances from the radar site.[3]
If I am correct and there is an effect on biology as I am seeing, there will be HELL TO PAY